首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   67篇
  免费   0篇
  2014年   2篇
  2013年   3篇
  2012年   1篇
  2011年   3篇
  2010年   4篇
  2009年   5篇
  2007年   3篇
  2006年   2篇
  2005年   2篇
  2004年   2篇
  2002年   1篇
  2001年   1篇
  1999年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   2篇
  1993年   2篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1985年   2篇
  1984年   3篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1980年   2篇
  1979年   2篇
  1978年   2篇
  1977年   2篇
  1974年   2篇
  1972年   1篇
  1971年   1篇
  1963年   1篇
  1944年   1篇
  1939年   1篇
排序方式: 共有67条查询结果,搜索用时 824 毫秒
11.
Evaluation of carbon accrual in afforested agricultural soils   总被引:3,自引:0,他引:3  
Afforestation of agricultural lands can provide economically and environmentally realistic C storage to mitigate for elevated CO2 until other actions such as reduced fossil fuel use can be taken. Soil carbon sequestration following afforestation of agricultural land ranges from losses to substantial annual gains. The present understanding of the controlling factors is inadequate for understanding ecosystem dynamics, modeling global change and for policy decision‐makers. Our study found that planting agricultural soils to deciduous forests resulted in ecosystem C accumulations of 2.4 Mg C ha−1 yr−1 and soil accumulations of 0.35 Mg C ha−1 yr−1. Planting to conifers showed an average ecosystem sequestration of 2.5 and 0.26 Mg C ha−1 yr−1 in the soils but showed greater field to field variability than when planted to deciduous forest. Path analysis showed that Ca was positively related to soil C accumulations for both conifers and deciduous afforested sites and played a significant role in soil C accumulations in these sites. Soil N increases were closely related to C accumulation and were two times greater than could be explained by system N inputs from atmospheric deposition and natural sources. Our results suggest that the addition of Ca to afforested sites, especially conifers, may be an economical means to enhance soil C sequestration even if it does not result in increasing C in aboveground pools. The mechanism of N accumulation in these aggrading stands needs further investigation.  相似文献   
12.
13.
14.
15.
16.
The heat‐ and odour‐producing genus Arum (Araceae) has interested scientists for centuries. This long‐term interest has allowed a deep knowledge of some complex processes, such as the physiology and dynamics of its characteristic lure‐and‐trap pollination system, to be built up. However, mainly because of its large distributional range and high degree of morphological variation, species' limits and relationships are still under discussion. Today, the genus comprises 28 species subdivided into two subgenera, two sections and six subsections. In this study, the phylogeny of the genus is inferred on the basis of four plastid regions, and the evolution of several morphological characters is investigated. Our phylogenetic hypothesis is not in agreement with the current infrageneric classification of the genus and challenges the monophyly of several species. This demonstrates the need for a new infrageneric classification based on characters reflecting the evolution of this enigmatic genus. To investigate the biogeography of Arum deeply, further spatiotemporal analyses were performed, addressing the importance of the Mediterranean basin in the diversification of Arum. Our results suggest that its centre of origin was the European–Aegean region, and that major diversification happened during the last 10 Myr. © 2010 The Linnean Society of London, Botanical Journal of the Linnean Society, 2010, 163 , 14–32.  相似文献   
17.
Increased plant productivity under elevated atmospheric CO2 concentrations might increase soil carbon (C) inputs and storage, which would constitute an important negative feedback on the ongoing atmospheric CO2 rise. However, elevated CO2 often also leads to increased soil moisture, which could accelerate the decomposition of soil organic matter, thus counteracting the positive effects via C cycling. We investigated soil C sequestration responses to 5 years of elevated CO2 treatment in a temperate spring wheat agroecosystem. The application of 13C‐depleted CO2 to the elevated CO2 plots enabled us to partition soil C into recently fixed C (Cnew) and pre‐experimental C (Cold) by 13C/12C mass balance. Gross C inputs to soils associated with Cnew accumulation and the decomposition of Cold were then simulated using the Rothamsted C model ‘RothC.’ We also ran simulations with a modified RothC version that was driven directly by measured soil moisture and temperature data instead of the original water balance equation that required potential evaporation and precipitation as input. The model accurately reproduced the measured Cnew in bulk soil and microbial biomass C. Assuming equal soil moisture in both ambient and elevated CO2, simulation results indicated that elevated CO2 soils accumulated an extra ~40–50 g C m?2 relative to ambient CO2 soils over the 5 year treatment period. However, when accounting for the increased soil moisture under elevated CO2 that we observed, a faster decomposition of Cold resulted; this extra C loss under elevated CO2 resulted in a negative net effect on total soil C of ~30 g C m?2 relative to ambient conditions. The present study therefore demonstrates that positive effects of elevated CO2 on soil C due to extra soil C inputs can be more than compensated by negative effects of elevated CO2 via the hydrological cycle.  相似文献   
18.
Apistogramma inconspicua sp.n. is described from the Rio Candclaria in the Rio Guaporé drainage in Bolivia, and recorded also from Cáceres on the Rio Paraguay in Brazil. The new species is closely related to the Paraguayan species A. commbrae (Regan) and an undescribed species in the Guaporé drainage system. These species share a specialized feature in the colour pattern, viz. an expanded vertical bar on the caudal peduncle which it confluent with the caudal spot. The now presumably complete record of Paraguayan Apistogramma species allows an analytical key to be given. Of the additional species, A. borellii (Regan) and A. trifasciata (Eigenmann & Kennedy) represent two distinct lineages. Apistogramma pleurotaenia (Regan) is probably a La Plata basin species, although no localities are known, and its relationship remain obscure. The assemblage of Paraguayan Apistogramma species reflects the heterogeneity of the Paraguayan cichlid fauna as a whole.  相似文献   
19.
Field‐scale experiments simulating realistic future climate scenarios are important tools for investigating the effects of current and future climate changes on ecosystem functioning and biogeochemical cycling. We exposed a seminatural Danish heathland ecosystem to elevated atmospheric carbon dioxide (CO2), warming, and extended summer drought in all combinations. Here, we report on the short‐term responses of the nitrogen (N) cycle after 2 years of treatments. Elevated CO2 significantly affected aboveground stoichiometry by increasing the carbon to nitrogen (C/N) ratios in the leaves of both co‐dominant species (Calluna vulgaris and Deschampsia flexuosa), as well as the C/N ratios of Calluna flowers and by reducing the N concentration of Deschampsia litter. Belowground, elevated CO2 had only minor effects, whereas warming increased N turnover, as indicated by increased rates of microbial NH4+ consumption, gross mineralization, potential nitrification, denitrification and N2O emissions. Drought reduced belowground gross N mineralization and decreased fauna N mass and fauna N mineralization. Leaching was unaffected by treatments but was significantly higher across all treatments in the second year than in the much drier first year indicating that ecosystem N loss is highly sensitive to changes and variability in amount and timing of precipitation. Interactions between treatments were common and although some synergistic effects were observed, antagonism dominated the interactive responses in treatment combinations, i.e. responses were smaller in combinations than in single treatments. Nonetheless, increased C/N ratios of photosynthetic tissue in response to elevated CO2, as well as drought‐induced decreases in litter N production and fauna N mineralization prevailed in the full treatment combination. Overall, the simulated future climate scenario therefore lead to reduced N turnover, which could act to reduce the potential growth response of plants to elevated atmospheric CO2 concentration.  相似文献   
20.
Chloroplast thioredoxin f (Trx f) is an important regulator of primary metabolic enzymes. However, genetic evidence for its physiological importance is largely lacking. To test the functional significance of Trx f in vivo, Arabidopsis mutants with insertions in the trx f1 gene were studied, showing a drastic decrease in Trx f leaf content. Knockout of Trx f1 led to strong attenuation in reductive light activation of ADP‐glucose pyrophosphorylase (AGPase), the key enzyme of starch synthesis, in leaves during the day and in isolated chloroplasts, while sucrose‐dependent redox activation of AGPase in darkened leaves was not affected. The decrease in light‐activation of AGPase in leaves was accompanied by a decrease in starch accumulation, an increase in sucrose levels and a decrease in starch‐to‐sucrose ratio. Analysis of metabolite levels at the end of day shows that inhibition of starch synthesis was unlikely due to shortage of substrates or changes in allosteric effectors. Metabolite profiling by gas chromatography–mass spectrometry pinpoints only a small number of metabolites affected, including sugars, organic acids and ethanolamine. Interestingly, metabolite data indicate carbon shortage in trx f1 mutant leaves at the end of night. Overall, results provide in planta evidence for the role played by Trx f in the light activation of AGPase and photosynthetic carbon partitioning in plants.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号